W32-B2900S0LAS2 キーサイト・テクノロジ・ W32-B2900S0L5/S0LSPG/S0LBMS2

太陽電池	品番	GP-IBボード	価格	動作環境
分光感度/量子効率 (IPCE EQE)の測定	W32-B2900SOLAS2-R	ラトックシステム製	1 100 000田	Windows 7/8.1/10/11 (64bit版推奨)
(IP CE, E C / V) 別 と 使用できる機種 B2901BL, B2910BL	W32-B2900SOLAS2-N	NI製	-1,100,000[]	Excel2010 2013/2016 2019/2021 (32bit版Only)
B2901A/B,B2902A/B,B2911A/B,B2912A/B	B2900 Seriseは、Keysight Tech	nologies社の商標です。		

機能

本ソフトは、太陽電池I-V測定システムを機能アップして、太陽電池の分光感度やIPCEの測定機能を追加しました。 従来からのI-V測定機能は全て継承し、分光光源の制御機能を追加することにより、分光感度/IPCEの測定を可能 にしました。

また、太陽電池セルの研究開発のための多様な計測方法にも対応しております。

1.波長別I-V測定と、その3D表示。

2.バイアス光を印加した分光感度/IPCE(EQE)測定。 3.セル2個の同時測定。

4.対象セルに適した分光光源の選択により、単色光光量や測定波長範囲の自由度。

5.ファイバー式分光光源を使用することにより、グローボックス内での測定が可能。

(以下は、W32-B2900SOLAS2の機能です。)

6.ソーラーシミュレータの光量を変えながらのI-V測定。

7.バイアス光量を変えながらの分光感度/IPCE測定。

本ソフトで分光感度の測定を行うためには、分光光源の「波長別光量値(mW/cm2)のデータが必要になります。 このデータの取得は、同梱の「光量校正アドイン」によって測定を行います。光量校正アドイン用操作マニュアル を参照ください。

目次

● ハードウェア構成と配線方法	2	
● 分光感度/IPCEの測定手順	4	
● 分光感度の繰返測定値の平均化処理の方法	14	
● バイアス光量を変更しながらの分光感度/IPCEの測定手順	15	
● 分光感度/IPCE(EQE)測定タイミングチャート	17	
● 光量−分光感度直線性評価の測定方法	18	
● 波長別I-V測定(3D分光感度)の測定手順	20	
● 波長別I-V測定のタイミングチャート	24	
● ソーラーシミュレータの光量可変I-V測定手順	25	
● ソーラーシミュレータの光量I-V測定タイミングチャート	27	
● 手動でのバイアス光印加での測定	28	
● バイアス光用光源の光量校正の方法	30	
Appendix-1 バイアス光照射による分光感度測定の注意点	32	
Appendix-2 ペロブスカイト太陽電池やDSCの光電流応答性測定	36	
Appendix-3 分光感度測定の自動遅延測定の方法	39	

操作説明

本操作マニュアルは、別冊B2900A/B用I-V測定アドインの操作マニュアルとの併用を前提に記載されております。 従いまして、I-V測定用操作マニュアルにすでに記載されている部分は省略されております。 本マニュアルを参照いただく前に、事前に、I-V測定の操作マニュアルの熟読をお願いいたします。

ハードウェアの構成とその配線

<u>朝日分光製の光源の場合</u>

<u>手動式分光光源の場合</u>

島津製作所製の光源の場合

分光計器製の光源の場合

分光感度/IPCEの測定手順

分光感度/IPCE測定に必要な光量校正データの準備

分光感度/IPCE測定を行うためには、「光量校正アドイン」で測定した波長別光量データリストが必要です。 このデータリストが、現在、測定しようとしているExcelシート上のこかに入力されている必要があります。 測定に必要なデータは、波長と光量の対データだけですから、「光量校正アドイン」で測定したデータそのままでも構いませんが、コピー&ペーストで現在のシートに入力して使用することもできます。(下図の赤枠)

光量	光量校正アドインで測定したデータ例												
	🚽 🤄 🖌 🕅 -	↓	20130)819c_定エネルギ・	-ONの3回繰り返し.xlsx	- Microsoft Excel							
77	イル ホーム	挿入	ページ レイアウト	数式 データ	校閲表示開	発 アドイン チーム	~ 😮						
	N38 - fx												
1.1	В	С	D	E	F	G	Н						
1	分光光测	系 MLS-	1510										
2						/							
3	測定波長		半値幅	25nm									
4	390		経過時間(sec)	光波長(nm)	差光量(mW/cm2)	実測光量(mW/cm2)	ベース光量(mW/cm2)						
5	400		4.056	- 390	9,08756	0.08762	0.00005725						
6	410		12.605	400	▶0.08568	0.08573	0.00005355						
7	420	波長1	ユ直 22.62	410	0.08583	0.08588	0.00005108						
8	430		32.651	420	0.08577	0.08582	0.00004784						
9	440		41.278	430	0.08561	0.08566	0.0000492						
10	450		49.904	440	0.08565	0.0857	0.00004741						
11	460		57.923	450	0.08588	0.08592	0.0000458						
12	470		67.891	460	0.0843	0.08434	0.00004362						
13	480		76.549	470	0.08472	0.08476	0.00003981						
14	490		85.207	480	0.08548	0.08552	0.00003907						
15	500		93.741	490	0.08516	0.0852	0.00003756						
16	510		1 02.648	500	0.08512	0.08516	0.00003646	-					
14 4	▶ N Sheet*	Sheet2	/\$2/			▲		▶ []					
17	74 🔝						🛄 100% 🖂 – 🖓	- + ";;					

光量校正アドインで測定したデータの、波長と光量がペアー になっている、この赤枠部分だけを使用します。

2 分光光源連動モードに設定

I-V測定ソフトを、分光光源連動モードに変更します。(下図参照) 「機器の設定」ボタンをクリックし、機器設定画面の「分光光源」から分光光源の型式を選択すると、本ソフト は分光光源連動モードに設定されます。「No Use」を選択すると、分光光源は切離され、I-V測定モードに戻り ます。

分光光源との通信試験で、分光光源から光を照射して、太陽電池セルの位置を確定します。 ここで重要なことは、光量校正アドインで使用した光センサーを取り除いて、そのセンサー 位置と極力同じ位置にセルを置くことです。特に高さ方向のズレは測定誤差に大きく影響し ますから、光センサーの表面と、セルの表面の高さは正確に合わせる必要があります。 また、ベース電流を測定しない測定の場合は、暗箱/暗幕な で、周辺の灯りを遮断する 必要があります。

ベース電流を毎回測定する測定では、周辺の灯りが安定していれば、灯りの遮断は、 あまり気にする必要はありませんが、その明るさは、バイアス光として作用しますから、 バイアス光の影響を受けるセルの場合は、やはり、周辺の灯りは遮断してください。

光センサーを太陽電池セルに置き換えます。 置き換えるとき、高さ方向の位置合わせは、 極力、正確に合わせる必要があります。

4 分光感度/IPCE測定モードに設定

戻ります。

(C)2012...2014 SYSTEMHOUSE SUNRISE Inc. 分光光源連動モードに設定すると、タイトルが赤色に変わり、分光光源の型式が表示されます。 縮小 分光器 PVL-3300 使用 注)このタイトル部分をダブルクリックすると、分光光源連動モードが解除され、I-V測定モードに START PAUSE STOP Excel Excelタブを選択します。-• Excel Sweep List B2901 出力方法 エラーマスク 3030. mA AUTO. RANGE 制限電流 ms 🗹 終了時出力OFF チェックを付けます。 保持時間 □パルス出力 ISC Measure PAUSE出力OFF ⊙ 分光感度 ○ voc 测定方法。 積分時間(NPLC) 測定遅延(ms) □電圧 1.0 1.0 ☑ 電流 □ 抵抗 出力電圧 0.0 V ● 分光感度 (ISC) ☑ グラフ化 ОК 🗹 スクロール □ 外部測定器使用 チェックを付けたときに表示される画面。 「分光感度」を選択します。 バイアス電圧を印加して分光感度を測定する場合は、 機器の設定 🕼 🖬 SEQ 出力電圧のテキストボックスをダブルクリックしてから、 Sun **** END 電圧値を入力します。

5 分光感度/IPCE測定前の準備

	【】 ↓ * * * * * * * * * * * * * * * * * *	cel 🛛 🗖 📈 📈
	77イル ホーム 挿入 ページレイアウト 数式 データ 校開 表示 開発 アドイン チーム	X 🖬 🗆 <table-cell></table-cell>
		(C)2012 2014 SYSTEMHOLISE SUNRISE Inc.
同一シート内に波長と光重のテータか人力、	B290030EA3V4 ·	(c)20122014 STSTEMHOOSE SOMUSE Inc.
されている必要があります。		分光器 PVL-3300 使用 缩小
		CTART RAUEL CTOR
	7(70-17)	START PAUSE STOP
		Excel
たましょ 佐里に このしょ 佐里杉改合さん イ	1 光波長(nm) 実測光量(mW/cm2)	Excel Swoon List
た頭ゼルゼ値に、このゼルゼ値が登録されて→→→	2 390 3.661	Exect Sweep List
いること。	3 410 4.895	B2901
• • • • • • •	5 450 6411	
	6 470 7.423	出力方法
	7 490 7.048	電圧 v 15~729
	8 510 6.447	
測点と明めまでし このも いい 佐澤 から	9 530 6.306	制限電流 3030. mA MINOR RAINGE
測正を開始すると、このカークル12直から	10 550 6.132	保持時間 ms ■終了時出力OFF
測定結果が入力されます。	11 570 5.844	- - パルス出力
	13 610 5169	D PAUSE# TOPE
	14 630 4.753	
	15 650 4.376	测定方法
	16 670 4.216	積分時間(NPLC) 測定遅延(ms) □電圧
	17 690 4.003	1.0 1.0
	18 710 3.617	· · · · · · · · · · · · · · · · · · ·
	19 /30 3.326	■測定レンジ 図時間 □ 抵抗
	20 750 3.1224	FI #=>// F 分光感音 (ISC)
	22 790 2.1402	
	23 810 3.471	☑ 200-ル
	24 830 5.77	「林窓前中報信田
	25 850 3.0529	- // 8///0/26602/0
	26 870 4.008	
	27 890 7.687	
	20 910 0.02	## PR n #0 cm (m2 PRESET SED
	30 950 4,506	W.489/02/2
	31 970 5.34	Surrison HELBR
	32 990 7.491	
	33 1010 4.887	
	34 1030 2.4641	
	35 1050 1.7971	
	30 10/0 1./002	
	38	· · · · · · · · · · · · · · · · · · ·
	III III Sheet1 Sheet2 Sheet3 Sheet4 2	
	147E	🔟 🛄 100% 😑 💎 🕂

G 分光感度/IPCE測定の開始

「START」ボタンで測定を開始します。

光量校正データの末尾(空欄のセル)で測定を終了します。

STOPボタンで測定をいつでも終了できますが、適切に終了するために、一旦、PAUSEボタンを押して、 分光光源の動作が停止するのを待ってから、STOPボタンで停止することをお勧めします。

		🚽 🤊 • (° - I	Ŧ				20131113_北陸纬	5端大学村田.xlsx	- Microsoft Excel			_		×
	77	イル ホーム	挿入	ページレイフ	やト 数式	データ 校	龃 表示 開	発 アドイン	<i>∓−</i> ⊿				≏ 🕜 ≏	i X
		🔧 👗 м в	Pゴシック	-	11 - A A	==_	≫ 🚔	標準	-	(C)201	22014 SYSTEM	HOUSE SUN	RISE Inc.	
測完前 東前に入力 た米曼林市	貼り	付け 10	7 11 -	cc - A	λ. Δ. Ζ.			<u>₩</u> - 9/. • *	.0 .00 条件付きテー	-ブルとして	分光器 PVI -	3300 使用	縮小	
一 方 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	-		Σ <u>υ</u>		· 📥 👳			-3 · /0 / J	書 ~ 定書	式設定・				-
7-9	999		_	747	F.	a HC		50x10	, III		• <u>s</u> tart	PAUSE	STOP	
		ING0	•	<u> </u>	DX E	E	0	Ц	T		Excel			
	1	●光波長(nm 爭	፪測光量(n	W/cm2)	E	F	G	п	1					
測定結果がExcelシートに入力されます。	2	390	3.661											
別と相来がとない。 「にてりられよう。	1	410	4.895		光波長(nm う 200	忙重(mW/cm/ 2.661	SMU1時間(sec)	実測電流1(m/	A)実測電流2(mA)	分光感度1(mA	,分光感度2(mA)	IPCE1(%)	IPCE2(%) 27.5261	
	5	450	6.411	<u> </u>	410	4.895	18.31283	3 0.010681:	2 0.0106627	109.1031665	108.9141982	32.99706	32,9399	
	6	470	7.423		430	5.603	38.55731	0.01643	4 0.01 6385	146.6535784	146.2163127	42.2908	42.1647	
分光感度、またはIPCEか同時に作図	7	490	7.048		450	6.411	53.50645	5 0.023850	3 0.0238047	186.0146623	185.655124	51.25737	51.1583	- 1
されます。	9	530	6.306		470	7.048	74,77449	9 0.033677	0.0336229	238,9181328	238,5279512	60.46092	60.36218	
IPCE測定がONの場合は、縦軸は	10	550	6.132		510	6.447	83.41899	9 0.03263	4 0.0326678	253.0944625	253.3566	61.53669	61.60043	
自動的にIPCEで作図されます。	11	570	5.844		530	6.306	90.04279	9 0.032346	0.0323743	256.4708214	256.694418	60.00449	60.05681	- 1
IPCE測定がOFFの場合は縦軸は	15	590	5.169		570	5.844	105.041.0	9 0.031425	0.0285558	244.0477413	244.3172485	53.091.09	53.14972	_
公共成在で作回されます	14	630	4.753		590	5.57	112.65158	0.025280	0.0252132	226.935368	226.3303411	47.69489	47.56773	
	15	650	4.876		610	5.169	119.23539	9 0.021225	5 0.0212626	205.3153415	205.6742116	41.73623	41.80918	
分光感度もOFFの場合は、縦軸は		690	4.2161		630	4./53	124.39719	0.0128211	a 0.01.28087	134.8821797	134./4332	26.54824	26.52091	
電流値で作図されます。	18	710	3.617		670	4.216	1 39.69629		IPCE CU	JRVE				
	19	730	3.326		690	4.003	157.04058	/0						
	20	750	2 6758		730	3.617	164./2/69	60	2000		+			
	22	790	2.1402		750	3.1224	178.04669	50	2 3				-0-2	
	23	810	3.471		770	2.6758	190.64799	d						
	24	830	3.0529		790	2.1402	199.66859	³ ⁴⁰	1		1			
	26	870	4.008					≚ 30 gP		£	+			
	27	890	7.687					20		<u>Т</u>				
	28	910	6.82					•		1				
	30	950	4.506					10		2				
	3.	970	5.34					0			<u></u>			
	32	990	7.491					390	490 590	690	790 890	990	1090	
	34	1030	2.4641							尤波長(ni	n)	1		
	35	1050	1.7971											-
	14 4	▶ N Sheet1	Sheet2 /	"Sheet3 /	Sheet4 🦯 😓 /							1 100%		
				_								100% ()	0	•

PVL-3300/PVL-4000EX(朝日分光製)の詳細設定

CMS-250(朝日分光製)の詳細設定

分光光源LMS-1510(朝日分光製)の設定

LMS-1510(2018)を含む

分光光源SPG-120シリーズ(島津製作所製)の設定

詳細設定ボタンをクリックして、分光感度の測定条件を設定します。

◇ PCから分光光源のシャッター開閉制御が できるシステムの場合。

波長の設定完了後のWait時間を入力します。 ベース電流を測定しない場合は、この後、測定を行います。 ベース電流を測定する場合は、この後、シャッター開後のWait時間を 待って測定がおこなわれます。

2ch測定の場合は、ここをダブルクリックして、SMU1/SMU2のセル __ 面積の入力を切換えます。

セル面積を入力します。2ch使用の場合は、SMU1/SMU2をそれぞれ 入力します。SMUボタンをダブルクリックすると、SMU1/SMU2が切換ります。

※ベース電流とは、分光光源のシャッターを閉じていて、単色光が出力 されていない時の暗電流を意味します。

ベース電流を測定しないで、Isc/Jscの測定を行います。暗箱や暗幕を 使用して、周辺を暗黒状態にした時は、こちらを選択します。

最初の測定時だけシャッターを閉じたときのベース電流を測定し、以降の 測定では、その測定値をベース電流として採用し、シャッターを開けて測定 した電流との差が取られます。 ベース電流は、波長毎にレベルが異なるため、このように初回だけのベース 電流測定の方法は避けたほうが無難と思われます。

各波長毎にシャッターを閉じたときのベース電流を測定し、シャッターを開け て測定した電流との差が取られます。 周辺から多少の光が漏れている場合な はこちらを選択します。 常にこちらを選択することを推奨します。 ただし、光の漏れはバイアス光として作用します。

波長別IV測定を行う場合の設定項目です。 「ISC値」: 全IV測定値を、単色光源OFF時のISC電流との差を取り算出します。 「スイープ値」:全IV測定値を、単色光源OFF時のIV測定値との差で算出します。

測定結果をExcelシートへ入力する項目を選択します。(差電流は、必須です。) IPCEを指定するためには、分光感度にチェックを付ける必要があります。

測定時に作図する項目を選択します。

測定の繰り返し回数を設定します。 この繰り返しは測定値のバラツキの評価に使用します。 DSCでは、測定遅延による影響の評価に使用します。 繰返し毎の遅延時間は、メイン画面の「測定遅延」の入力値に寄ります。 この回数は、波長別I-V測定では、適用されません。 シャッターを開いてから電流測定開始までの待ち時間

MONOCHROMATER MONOCHRO SCANNER BMS-25C 波長設定後のWAIT ● 0.3 sec セル受光部面積 SMU1 GPIB Address MONO-TYPE cm2 SM-5/M10 -500 nm ベース電流の測定 (単色光OFFの時の電流) Gratings(Lin ScanSpeed(mm/min) --● ペース電流は測定しない。 1200 300 WAVE LEN(nm) FILTER-NO ◆ ペース電流を測定する。(初回だけ) Filter Control FILTER-1 ▶ パース電流を測定する。(毎回) <推奨> 390 Filter Manual Change FILTER-2 -- スイープ測定時のペース電流・ ▶ • ISC値 ○ スイープ() è l 680 EILTER-3 V ○ スイープ値 分光感度の測定項目 U Shutter1 Auto Shutter2 Auto 0.5 sec Shutter Manual Change 繰返 归 🔶 ⑦ ペース電流(A)
 図実測電流(B) Communication Te 試驗開始 ● 差電流(B-A) 波長 500 / ▶ 分光感度 PCから、シャッター開閉制御のできないシステム、 または、手動でシャッター開閉操作を行わない場合は - スイープ測 チェックを付けないでください。 ⊙ 分光感度 注)シャッター開閉制御を行う利点 単色光の光量を測定する場合、シャッタ閉で単色光 OFFの光量(周辺光)を測定し、シャッタ開での単色光 ONの光量との差を取ることにより、周辺から侵入した 光の誤差成分を除去し、正確な単色光の光量測定が できます。 しかし、手動でのシャッタ開閉制御で測定を行う場合、 波長ごとに手動でシャッタを開閉する必要があるため、 測定が、相当、面倒になりますからご注意ください。

・バイアス光照射測定

単色光だけの電流変化分の測定が可能になります から、バイアス光を照射した状態での測定が可能に なります。

手動式分光光源の設定

セル面積を入力します。2ch使用の場合は、SMU1/SMU2をそれぞれ 入力します。SMUボタンをダブルクリックすると、SMU1/SMU2が切換ります。、 ※ベース電流とは、分光光源のシャッターを閉じていて、光が出力されて いない時の暗電流を意味します。 MONOCHROMATER × ベース電流を測定しないで、光パワーメータでの測定を行います。暗箱や セル受光部面積 SMU1 • 1 暗幕を使用して、周辺を暗黒状態にした時は、こちらを選択します。 cm2 ベース電流の測定 (単色光OFFの時の電流) 最初の測定時だけシャッターを閉じたときのベース電流を測定し、以降の~ 測定では、その測定値をベース電流として採用し、シャッターを開けて測定 ◆ ベース電流は測定しない。 ● ペース電流を測定する。(初回だけ) した電流との差が取られます。 ● ペース電流を測定する。(毎回) <推奨> ベース電流は、波長毎にレベルが異なるため、このように初回だけの電流 スイープ測定時のペース電流 — ■・ISC値 ○ スイープ値 測定の方法は避けたほうが無難と思われます。 ・ 分光感度の測定項目 -各波長毎にシャッターを閉じたときのベース電流を測定し、シャッターを開け Repeate 🔻 🏓 🗧 て測定した電流との差が取られます。 🖌 ベース電流(A) 周辺から多少の光が漏れている場合な はこちらを選択します。 常にこちらを選択することを推奨します。 ☑ 実測電流(B) ☑ 差電流(B-A) ∕ ☑ 分光感度(電流/光量) 波長別IV測定を行う場合の設定項目です。 IPCE(EOE) 「ISC値」: 全IV測定値を、単色光源OFF時のISC電流との差を取り算出します 「スイープ値」:全IV測定値を、単色光源OFF時のIV測定値との差で算出します。 スイ・ -プ側定の場合の算出方法・ ● ③ 分光感度(A/W) O IPCE(%) 測定結果をExcelシートへ入力する項目を選択します。(差電流は、必須です。) 光量の参照方法 (mW/cm2) 測定時に作図する項目を選択します。 ● Excelシートから 〇固定 OK

> 加定の繰り返し回数を設定します。 この繰り返しは測定値のバラツキの評価に使用します。 DSCでは、測定遅延による影響の評価に使用します。 繰返し毎の遅延時間は、メイン画面の「測定遅延」の入力値に寄ります。 この回数は、波長別I-V測定では、適用されません。

分光感度の繰返測定値の平均化処理の方法

分光感度測定では、下記のように「Repeat」の機能により、各波長ごとに複数回の繰返し測定ができます。 この「Repeat」部分ダブルクリックすると、「Repeat」が「Averag」に切換ります。

・「Repeat」での測定は、セルの光電流の応答性遅れを評価できます。光電流の応答の遅いセルは、繰り返し 測定毎に分光感度測定値が徐々に大きくなる傾向が有ります。 また、分光感度測定値のバラツキの程度を把握するにも役立ちます。

・「Averag」での測定は、光電流がバラツク場合に繰返測定値を平均化してバラツキを低減します。 光電流が極端に少ない場合のバラツキや、バイアス光の影響によるバラツキの低減にも役立ちます。

バイアス光量を変更しながらの分光感度/IPCEの測定手順

注)この項目は、「W32-B2900SOLAS2」だけで使用できます。

1 前項の分光感度/IPCE測定に必要な項目は全て設定しておきます。

前項の「分光感度/IPCE測定」の項を参照ください。

分光光源の選択を行います。

分光光源の選択を行っていないと、バイアス光量の制御モードが設定できません。

シャッター制御にチェックを付け、バイアス光量の制御条件を入力します。

ソーラーシミュレータの種類を「Asahi Spectra」を選択しないと、「光量制御ON」が表示されません。

- 「BS.START」ボタンをクリックすると測定を開始します。

本ソフトは、測定対象となるセルの光応答性や電気的応答性に適切に対応し、正確な測定ができるように、 様々な部分にWAIT時間の設定ができます。また分光光源の物理的動作の遅れにも対応できます。 ここでは、測定上のWAIT位置とその入力方法を示します。

光量-分光感度の直線性評価の測定手順

本測定を行うためには、分光光源PVL-3300、または、PVL-4000EXが必要です。

1 光量-分光感度の直線性評価測定に必要な光量校正データの準備

光量-分光感度の直線性測定を行うためには、「光量校正アドイン」で測定した波長/光量/制御光量データ リストが必要です。

このデータリストが、現在、測定しようとしているExcelシート上の こかに入力されている必要があります。 測定に必要なデータは、波長/光量/制御値のデータだけですから、「光量校正アドイン」で測定したデータ そのままでも構いませんが、コピー&ペーストで現在のシートに入力して使用することもできます。 (下図の赤枠)

> 光量校正アドインで測定したデータの、波長/光量/制御値が セットになっている、この赤枠部分だけを使用します。

🗙 🛃 🤘	7 - (° - ∣⊋			取説用語	データシート.xlsx	- Microsoft Excel			
ファイル	ホーム 邦	■入 ページ レイアウト	数式 データ	校閲 表示	開発	アドイン チーム			♡ 🕜 🗆 🗗
	K27	▼ (<i>f</i> x					/		
A	В	С	D	E	F	G	н	I	J ł
1	光波長(nm)	制御光量(mW/cm2)							
3	400	0.02		経過時間(sed)光波長(nm)	差光量(mW/cm2)	制御値(mW/cm2)	実測光量(mW/cm2	ベース光量(mW/cm2)
4	400	0.025		1.966	400	0.01993	0.02	0.02005	0.00011
5	400	0.03	油目供	5.50	400	0.02427	0.025	0.02502	0.00075
6	400	0.035	波支世	旦 9.048	400	0.02986	0.03	0.03017	0.00030
7	400	0.04		12.58	400	0.03458	0.035	0.03520	0.00062
8	400	0.045		16.115	400	0.03973	0.04	0.04039	0.00066
9	400	0.05		19.656	400	0.04453	0.045	0.04518	0.00065
10	400	0.055		23.19	400	0.04967	0.05	0.05025	0.00058
11	400	0.06		26.723	400	0.05527	0.055	0.05543	0.00016
12	400	0.065		30.28	400	0.06022	0.06	0.06023	0.00001
13	400	0.07		33.831	400	0.06487	0.065	0.06535	0.00047
14	400	0.075		37.362	400	0.07034	0.07	0.07047	0.00013
15	400	0.08		40.919	400	0.07481	0.075	0.07500	0.00019
16	400	0.085		44.46	400	0.07992	0.08	0.08023	0.00032
17	400	0.09		48.01	400	0.08532	0.085	0.08540	0.00008
18	400	0.095		51.558	400	0.09048	0.09	0.09066	0.00017
19	400	0.1		55.084	400	0.09472	0.095	0.09517	0.00045
20				58.625	400	0.1 0036	0.1	0.10086	0.00050
21				^					
22									
23			,						
4 4 F FI	<u>Sheet1</u>	heet2 / Sheet3 / 💱 /				I ∢			•

2 光量-分光感度直線性測定モードの設定

全ての設定は、前項の分光感度/IPCE測定モードの設定と同じですが、唯一、 下記の部分の変更が必要です。

	MONOCHROMATER	
光量制御値の項を「Excelシートから」―― に設定します。	MONOCHROMATER PVL-3300 逆県設定地のWAIT 0.3 sec セルラン部商様 SMU1 1 cm2 パース電流の別定	
	☑ 分光感度(電流/光量) SLIT-WIDTH? WAVE-LENGTH? ☑ 沪CE(EQE) 光量 130.00 %	
	○分光感度(A/W) ○ IPCE(%) はありの行 はありの行	
	光量の参照方法 (mW/cm2) 校正値 出力光量 130 % 0.13 mW/cm2	2
	◎ Excelシートから 範囲 0.02 0.13 範囲 0.02 0.13	3
	ок	

3 光量-分光感度直線性測定前の準備

同一シート内に波長/光景/制御値のセットデータが入力	Image: Section 2015 - 100
ちっている必要がおります	ファイル ホーム 挿入 ページレイアウト 数式 データ 校開 表 (C)20122014 SYSTEMHOUSE SUNRISE Inc.
されている必要がのりより。	W39 → (fx 分光器 PVL-3300 使用 縮小
	L M N O P Q START PAUSE STOP
先頭セル位置に、このセル位置が登録されて――	2 3 予波長(nm) 差光量(mW/cm2 制御値(mW/cm2)
	4 400 0.019068875 0.02
いること。	5 400 0.02439721 0.025 Excel Sweep List
	7 400 0.03516214 0.035 B2902(ch1)
	8 400 0.039877838 0.04
	9 400 0.044235557 0.045 出力方法
	10 400 0.0493/994 0.05 電圧 15-725
	11 400 00012 0001 0000 単版要告: 3030 ma MAUTO, RANGE
	13 400 0.065086934 0.065
	14 400 0.070080668 0.07 保持時間 ms 日本 1940/01
	15 400 0.074932709 0.075
	17 400 0.084880417 0.085
	18 400 0.090306887 0.09 測定方法
	19 400 0.094482982 0.095 積分時間(NPLC) 測定運延(ms) 口 電圧
	20 400 0.099746369 0.1 1.0 1.0
	21 22
	23 / 潮定レジ / 時間 山抵抗
	24 III グラフ化 III 分光感度 (ISC)
	20 27
	28 「外部測定器使用
	29
	30
	33 機器の設定 「 一 一 観 「 本 に 」 「 に 、 E 、 E 、 E 、 E 、 E 、 E 、 E 、 E 、 E 、
	36 Karl Charle Charles (Starles (Starles)

▲ 光量-分光感度直線性測定の開始

「START」ボタンで測定を開始します。 光量校正データの末尾(空欄のセル)で測定を終了します。 STOPボタンで測定をいつでも終了できますが、適切に終了するために、一旦、PAUSEボタンを押して、 分光光源の動作が停止するのを待ってから、STOPボタンで停止することをお勧めします。

		_ • 7 • (* •	-				J	収説用	目データシート	.xlsx - Micro	osoft	Excel		(c)2012	2 2014 52	CTEMU		DICE 1		X	×
	77	い ホーム	挿入 ページ	レイアウト 数式	デー	-9	校開	表示	開発	アドイン	≠−L			(0)2012	2014 31	STEPIN	JUSE 301	NISE I	IIC		23
		Z30	- (e	f_x									_		分光器 F	VL-33	300 使用		縮	1	~
		М	N	0	Р	Q	R		S	Т		U	,	\square	START	р	AUSE	4	TOP	-	fe.
	1													P.	Diviti		NOOL		TOL		C î l
	2												_		Ð	cel					
	3																				
測定前、事前に入力した光量校正	4	北京市 臣/	±ν₽/	生川谷町/本/		E C		NZ E	L//	0) // // D±88	07.1	っ (雨)法/…	中间雨	志(。)	关示:()	0 250	(町広(…)	0.40			411
データ	- Co	元/反支(nm 400	左元里(mW/cm2 0.019068875	市川山川道(mw/cm2 0.02	1		元/反支(nm 400	元里	≝(m₩/cm: 1906887	O Dial Collegia	2.6	ス 电//ILL M/ R691 E=-06	夫/則电/	911(MAJ : 97072	空电//III/m/ 0.00050/I	J 777 AA	389度(mA 253 357	200). 2085	PUE(%)	178956	6
	7	400	0.02439721	0.02			- 4 400	0.0	2439721	10.608	5.5	1653E-06	0.00303	69142	0.003334	64	253.367	9011	61 547	34212	3
	8	400	0.029524728	0.03	-		400	0.0	2952473	21.31	2.4	6995E-06	0.01480	02178	0.014799	71	253.37	808	61.558	09368	9
	9	400	0.03516214	0.035			400	0.0	3516214	32.027	9.9	8017E-06	0.01765	58593	0.017648	66	253.389	0385	61.568	81577	7
測点は用がいいに、 したり もさね ――	10	400	0.039877838	0.04			400	0.0	3987784	42.76	7.6	8072E-06	0.0199	79895	0.019972	26	253.400	1775	61.579	50777	7
測定結果かExcelシートに入力され~	11	400	0.044235557	0.045			400	0.0	4423556	53.493	5.9	7026E-06	0.0221	57256	0.022151	29	253.410	4562	61.59	02373	3
ます。	12	400	0.04937994	0.05			400	0.0	4937994	64.21	1.7	7213E-06	0.0247	70028	0.024768	26	253.421	669	61.600	91908	3
	13	400	0.054906718	0.055			400	0.08	5490672	74.943	81	•	*5	そして	ラ性証	Œ.				9575	5
	14	400	0.060124707	0.06			400	0.00	6012471	05.076	4	65	ᇩᆂ	= 13A T	тітш	1JMU				1/489	3
	10	400	0.065066934	0.007			400	0.00	0000093	107.204	-1	64								0796	6
光量-分光感度、またはIPCEが同時 —	17	400	0.074932709	0.07			400	0.0	7493271	117.968	11	63								9437	7
に作図されます。	18	400	0.079688609	0.08			400	0.0	7968861	128,732	4	62					-			3058	8
	19	400	0.084980417	0.085			400	0.00	6498042	139.465	1	G 61		00-0-		-0-0-0	4000	¥		2996	6
	20	400	0.090306887	0.09			400	0.0	9030689	150.198	1	B 60			+					9775	ō
同し値の場合は、傾軸は自動的に	21	400	0.094482982	0.095			400	0.0	9448298	160.915	1	₫ 59								4797	7
光量になります。	22	400	0.099746369	0.1		L	400	0.0	9974637	171.632	3	58					+			8521	1
IPCE測定がONの場合は、縦軸は	23											57								-	
白動的にIPCFにたります	24											56								-	
	20											55 -	0.07					0.1	0.12		
IPCE測定かOFFの場合は、縦軸は	20											0	0.04	2 0	.04 0.0		J.08	0.1	0.12		
分光感度になります。	28														JUE	v/cm2					-
	14 4	▶ ▶ Sheet1	/Sheet2 /Sheet	3/2								14								•	•
	_⊐Z)	/F 🔚															100%	9—			÷ ";

波長別I-V測定(3D分光感度)の測定手順

2 波長別I-V測定に必要な光量校正データの準備 (この2項は、前述の分光感度/IPCE測定の1項と同じです。)

波長別I-V測定を行うためには、「光量校正アドイン」で測定した波長別光量データリストが必要です。 このデータリストは、分光感度/IPCE測定で使用するデータリストと同じデータです。 このデータリストが、現在、測定しようとしているExcelシート上の こかに入力されている必要があります。 測定に必要なデータは、波長と光量の対データだけですから、「光量校正アドイン」で測定したデータそのまま でも構いませんが、コピー&ペーストで現在のシートに入力して使用することもできます。(下図の赤枠)

	光量校	正アドイン	マ測定したう	データ例				
	n	1 2 3		20130821a_分)	光感度3D測定×lsx - M	licrosoft Excel		- 0 x
	していたいです。 貼り付け クリップボー	h H H MSP B Z ♥ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	スページレア N ゴシック ・11 ・ 単 ・ A・A・ フォント 「		な 根準 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	発生する 条件付き書式 、 テーブルとして書式設定、 セルのスタイル 、 スタイル	計 ●挿入 - 予削除 - 調書式 - セル	 ・ □ × ・ ・ ・
		K41	- (°	Jx 1195.237	/			×
		D	E	F	G	Н	Ι	J
	2	経過時間(:光波長(nm)	差光量(m)(/cm2)	制御値(mW/cm2)	実測光量(mW/cm:/	ベース光暈(mW/cm2)	
	3	4.071	- 390	0.02234	0.022	0.022341	0.0000089	
	4	14.758	410	0.021984	0.022	0.021984	7.607E-07	
	5	25.834	430	0.021965	0.022	0.021965	8.229E-07	
波長位直	6	35.084	450	0.021823	0.022	0.021824	7.559E-07	
	7	45.022	470	0.021727	0.022	0.021727	0.000000662	
	8	54.741	490	0.021667	0.022	0.021667	6.533E-07	
	9	65.817	510	0.021614	0.022	0.021614	5.894E-07	
	10	75.411	530	0.021861	0.022	0.021861	5.474E-07	
	11	86.144	550	0.021939	0.022	0.021939	5.604E-07	
	12	96.44	570	0.021937	0.022	0.021938	5.563E-07	
	13	107.469	590	0.021848	0.022	0.021848	5.661 E-07	
	14	118.514	610	0.021961	0.022	0.021962	0.00000526	
	15	128.155	630	0.021776	0.022	0.021776	5.041 E-07	
	16	137.702	650	0.021899	0.022	0.021899	4.923E-07	
	17	147.07	670	0.022214	0.022	0.022214	4.831 E=07	
	18	157.374	690	0.02211	0.022	0.022111	0.00000466	
	19	170,401	710	0.022113	0.022	0.022114	4.543E=07	
	20	199.51	730	0.021791	0.022	0.021792	4.411E=07	
	22	200.602	750	0.022000	0.022	0.022000	4.202E-07	
	23	211.631	790	0.022132	0.022	0.022132	4.064E-07	
	24	223.034	810	0.022205	0.022	0.022205	3.865E-07	
		Sheet1	Sheet2 / Sheet3	/Sheet4 / 💭 /	0.022		3.5002 07	
	אעדב	2					100% 😑 🔤	

光量校正アドインで測定したデータの、波長と光量がペアー になっている、この赤枠部分だけを使用します。

雪圧(V)

3 分光光源連動モードに設定

(この3項/4項は、前述の分光感度/IPCE測定の2項/3項と同じです。)

I-V測定ソフトを、分光光源連動モードに変更します。(下図参照)

「機器の設定」ボタンをクリックし、機器設定画面の「分光光源」から分光光源の型式を選択すると、本ソフト は分光光源連動モードに設定されます。「No Use」を選択すると、分光光源は切離され、I-V測定モードに戻り ます。

波長別I-V測定データの入力方向の切換

太陽電池測定

X

波長別I-V測定の作図を等高線作図に変更します。

9

波長別I-V測定のタイミングチャート

本ソフトは、測定対象となるセルの光応答性や電気的応答性に適切に対応し、正確な測定ができるように、 様々な部分にWAIT時間の設定ができます。また分光光源の物理的動作の遅れにも対応できます。 ここでは、測定上のWAIT位置とその入力方法を示します。

ソーラーシミュレータの光量可変I-V測定の測定手順

注)この項目は、「W32-B2900SOLAS2」だけで使用できます。

1 分光光源の選択を行います。

分光光源の選択を行っていないと、バイアス光量の制御モードが設定できません。

シャッター制御にチェックを付けて、バイアス光量の制御条件を入力します。

ソーラーシミュレータの種類を「Asahi Spectra」を選択しないと、「光量制御ON」が表示されません。

ſ	シャッターの制御	X		(C)20122014 SYSTEMHOUSE SUNRISE Inc.
	USE DEVICE Asahi Spect	ra(RS232C)	「Sweepタブ」を選択	分光器 MLS-1510 商小
「Asahi Spectra」を選択します。	Asahi Sp	pectra(RS232C)		SPECTRUM I-V Sweep
	Asahi Spectra(RS2320			Excel Sweep List
	K5-232C FUILT			B2902(ch1) - スイープ出力
	☑ 測定開始でシャッター開く	DELAY 0.1 sec		
「光量制御ON」にチェックを付けます。、				STOP 0.8 V
	☑ 測定終了でシャッター閉じる	DELAY 0.0 sec		STEP 0.02 V 逆終了時出力OFF 制限電流 5.68 mA □ 往復測定
\sim			「シャッター制御」	(保持時間) ms □/パルス出力 測定方法
	<u> </u>		にチェックを付け ます。	
「SWEEPに適用」にチェックを付けます。	▶ 光量制御ON	ОК		■濃定レンジ ■ ガラフ/L ■ 時間
	光量制御			☑ 大陽電池測定 変更 ■ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
バイアス光源(ソーラーシミュレータ)を選択します。――――	▼ 分光感度に適用 ▼ SV	VEEPIJ通用		
	光量制御リスト(コンマ区切り) 範	⊞ 01		
米酒の米景制御山てんたわいマで区切って入力」ます ――	0.05,0.2,0.4,0.6,0.8,	1.0		
「0」は、バイアス光OFFを意味します。「1」は、現在の	※本元量 I- 光源ON後のWAIT		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
光源の設定値を意味します。 例えば 光源の光量が現在80%に設定されていて	校正値読込 校正値書	出削除	が重め単位 mW/cm2に固	定されています。
(80%出力で、1-SUNに設定)			現在の光源の)光量
「0, 0.5, 1, 1.1」と入力した場合、 また 「其本光量 1=100」「UNIT mW/cm2」と入力されていた	場合	~	光量制御リス	トが1の時の値。
0 バイアス光OFF		\backslash	、光量設定後の)待ち時間
0.5 光量 40% (50mW/cm2) 1 光量 80%(100mW/cm2)		、 光量の校正を行うことによ	り、光量の確度を向上	することができます。
1.1 光量 88% (110mW/cm2)		校正していない場合は、光	量か直線的に変化する	ることを前提に、光量制御リス
る光量での、変換効率は、ここで入力した光量で計算されま	き。	光量の校正を行うことによ	ッ。 り、光量が非直線性の	場合でも、正確な光量を算出
従いまして、変換効率を正確に算出したい場合は、 "其本光号-1" "UNIT"の入力は、mW/am2または、W/m2の	たらかで	できます。 校正の方法は 後述「バイ	アス光田光源の校正才	う法」を参照ください。
入力することが必要です。			, шта у шту.	
ただし、光量%値の直線性は保証されておりませんので、あく 値となります。	(までも参考			
正確な光量値が必要な場合は、下欄の校正値読込で校正を	そ行ってください。			

3

「BS.START」ボタンをクリックすると測定を開始します。

ソーラーシミュレータ光量可変によるI-V測定のタイミングチャート

でのバイアス光印加の測定 助 ΞĒ

注)白色バイアスを印加して分光感度測定を行う場合、単色光の光量が1mW/cm2(550nm)程度必要です。

1.バイアス光測定の条件設定

バイアス光を印加しない測定と、印加する測定とで本アドインの操作方法 に違いは有りません。必要なことは、必ず「ベース電流を測定する(毎回」 を選択することです。(右図)

2.バイアス光用光源の選択について

バイアス光の光源を選択する場合、ハロゲン光源やLED光源を推奨 します。

ー般的にソーラーシミュレータで使用される大パワーのキセノン光源 はお勧めできません。キセノン管は、放電管であるため光のチラつき が大きく、Isc/Jsc値の測定にバラツキを生じる原因になります。 もし、キセノン光源を使用する場合は、単色光の100倍程度の光量 以下に光量を落としてご使用ください。

例えば、単色光のMaxが、1mW/cm2であれば、バイアス光の光量を 100mW/cm2以下にすることをお勧めします。

太陽電池セルの分光感度特性が極端に小さい場合、または、単色光 の光量に対し、バイアス光の光量を大きくしすぎると、右図のように 測定結果が不安定になります。

バイアス光無しでの測定例

バイアス光の光量が大きい場合

バイアス光を印加して、DC法で分光感度を測定する方法は下記の図のように行われます。 バイアス光は常時印加した状態で、単色光の波長を変更しながら、Iscの測定を行います。 各波長ごとに、単色光OFFでのIscを測定し、次に、単色光ONのIscを測定し、その電流差を取り出します。 その電流差を使用して分光感度/IPCEを計算します。

使用する測定器B2900Aシリーズは、電流測定を6桁半の有効桁数で測定を行うため、バイアス光による電流 オフセットを伴う単色光のIsc電流増分も、ある程度までの測定は可能になります。

単色光の光量に対し、バイアス光の光量をあまり大きくすると分光感度の測定値がばらついたり、 確度の悪化をもたらします。

バイアス光の光量は、単色光の最大光量の100倍以下で測定されることをお勧めします。

4.バイアス光印加の波長別I-V測定の原理

I-V測定データに対しベース電流(暗電流)の補正を行う場合、「ISC値」補正と、「スイープ値」補正の選択ができます。(15ページ参照)

「ISC値」補正を選択した場合は、各波長ごとに、I-V測定直前のバイアス光だけのIscを測定し、その後、 単色光をONにしてI-V測定を行います。バイアス光だけのIsc値をゼロとしてI-Vデータを作図します。 (下図参照)

「スイープ値」を選択した場合は、単色光OFFのIVデータと、単色光ONでのIVデータの差を算出し、IVデータとします。

バイアス光用光源の光量校正方法

注)この項目は、「W32-B2900SOLAS2」だけで使用できます。

1. 光 量校正リストを作成します。

ソーラーシミュレータの光出力設定値(%)に対する実際の光出力値を測定します。 光出力を測定するためのセンサーが必要になりますが、ここでは単結晶Siセルを使用します。 フォトダイオードの出力をマルチメータで測定することでもよいと思います。 光量に正比例する受光素子であれば問題ありません。

・Excelシートに、ソーラーシミュレータの校正する出カリスト(%値)を縦方向に手入力します。

- ・ソーラーシミュレータでセル(受光素子)に照射します。
- ・IV測定ソフトのISCモニター機能を起動して、セルのISC値を観察します。
- ・出力リスト(%)に従って、手動でソーラーシミュレータの出力(%)を変えながら、それぞれのISC値を 読み取り、Excelシートにキー入力します。この時、マイナスの読み値をプラスに変更して、Excel へ入力します。
- 読み値の単位は、何でも問題ありません。(A,V,mW/cm2,等々) ・光量校正リストの作成は、全て手動測定で行ってもかまいませんが、
- 下記のように、IV測定ソフトのISC連続測定機能を利用すると、容易に行う ことができます。

2. 光 量校正リストを読み込みます。

3. 光 量校正リストの測定への適応、校正リストの確認/削除。

4. 光量校正が行われていない時と、行われている時の光量算出方法の違い。

例として、ソーラーシミュレータの光出力が80%で、1-SUN(100mW/cm2)に設定されていて、 光量制御リストが、「0,0.4,0.8,1.0,1.1」と入力された場合。

光量制御リスト	光出力	光量計算式	算出された 光量値(mW/cm2)
0	シャッター 閉じる		0
0.4	32%	100* 0.4	40
0.8	64%	100* 0.8	80
1.0	80%	初期値	100
1.1	88%	100* 1.1	110

光量校正が無い場合の光量算出方法

光量制御リスト	光出力	ISC測定値 (mA)	光量計算式	算出された 光量値(mW/cm2)
0	シャッター 閉じる			0
0.4	32%	4.2	100* <u>4.2</u> 12.0	35
0.8	64%	9.1	100* <u>9.1</u> 12.0	75.8
1.0	80%	12.0	初期値	100
1.1	88%	13.44	100* <u>13.44</u> 12.0	112

光量校正リスト

注)該当する数値(%)が無い場合は、比例配分によりISC値を 算出して、補正を行います。

Appendix-1 バイアス光照射による分光感度測定の注意点

<u>1.バイアス光源の選択</u>

バイアス光源は、極力、光量が安定しているものを使用してください。 ただ、数秒以上でゆっくりと光量が変動するものは問題ありません。 チラつきの無いハロゲン光源やLED等が理想的です。 モノクロ光源の光量が1mW/cm2以上確保できるのであれば、キセノンを使用したソーラーシ ミュレータの使用が可能ですが、100W程度のキセノン管タイプで、チラつきの少ないものを 使用してください。朝日分光製HAL-C100をお勧めします。

2.分光感度測定用モノクロ光源の光量について

モノクロ光源は、極力、光量のパワーを大きくして測定することが大切です。 しかし、チラつきの無いハロゲン光源やLEDを使用する場合は、モノクロ光源の光量は、それ ほ 問題ではありません。

朝日分光製HAL-C100のソーラーシミュレータ(キセノン管)をバイアス光源に使用し、モノクロ光源にMLS-1510を使用する場合、照射 域を10mm*10mm程度まで絞り、500nm域の 光量を1mW/cm2以上に光量をアップして測定してください。

<u>3.有機系太陽電池の分光感度測定の注意事項</u>

バイアス光を照射して分光感度測定を行った時、測定開始の波長部分で下図 の丸印の様に、分光感度がマイナスになる、または、小さめの値を示す場合が 有ります。または、その逆の場合も有ります。 この原因は、バイアス光による電流(ISC)が安定状態になる前に測定を開始 したためです。しかし、ペロブスカイト太陽電池を含め、有機系太陽電池では、 電流(ISC)が完全に安定するためには多くの時間を必要とします。 この測定誤差を回避するために、有機系太陽電池測定では、右図の「ORGANIC」 にチェックを付けます。(無機系の測定を行っても問題はありません。) しかし、急激な電流変化のある先頭の時間帯だけは避けてください。 次ページ以降に、その詳細を記載します。

無機系太陽電池の場合

「ORGANIC」にチェックを付けない。 Si系や化合物系なのセルの場合は、電流の応答性も速く、電流値 (ISC)も安定しているため、「ORGANIC」にチェックを付けないで測定 します。ただし、チェックを付けて測定しても問題は有りませんが、 若干、測定時間が増えます。

有機系太陽電池の場合

「ORGANIC」にチェックを付ける。

ペロブスカイト型太陽電池を含む有機系太陽電池は、バイアス光を照射後の電流(ISC)の変化が大きく、 電流(ISC)が安定するのに長い時間が掛かります。

MONOCHROMATER

波長設定後のWAIT

セル受光部面積 SMU1

○ ペース電流は測定しない。

○ ペース電流を測定する。(初回だけ)

ベース電流の測定 (単色光OFFの時の電流) 0.3

1

○ スイープ値

繰返 3 🔶

ORGANIC

● IPCE(%)

sec

cm2

また、単色光照射ON/OFFの両方に対する電流応答も緩慢です。

有機系太陽電池では、これらの特徴を考慮した測定条件を設定して分光感度測定を行わないと、正しい 測定ができません。

▶分光感度測定時の電流波形

「ORGANIC」にチェックを付ける

分光感度測定のタイムチャート

「ORGANIC」にチェックを付ける。

Appendix-2 ペロブスカイト太陽電池やDSCの光電流応答性測定

※「W32-B2900SOLAS2」「W32-B2900SOLBMS2」だけの機能です。

光電流の応答が緩慢なため、分光感度測定では電流の測定のタイミングが重要です。

ペロブスカイトやDSC 波長別の光電流応答性を測定

※波長ごとに応答時間が異なる。

Siセル 波長別の光電流応答性を測定 ※瞬時に光電流は応答する。

▶波長ごとに最適測定ポイントが異なる。

●バイアス光を使用する場合、ベース電流が常に変化するためベース電流の傾斜補正が必要。

補足説明

4端子接続ケーブル/シールド付(S4W-03)の接続方法

TRX/ローノイズケーブル(S4W-04)の接続方法

補足説明

光触媒の量子収率測定での TRX/ローノイズケーブル(S4W-04)の接続方法

